Performance Improvement of Low-Cost Iterative Learning-Based Fuzzy Control Systems for Tower Crane Systems

نویسندگان

چکیده

This paper is dedicated to the memory of Prof. Ioan Dzitac, one fathers this journal and its founding Editor-in-Chief till 2021. The addresses performance improvement three Single Input-Single Output (SISO) fuzzy control systems that separately positions interest tower crane systems, namely cart position, arm angular position payload position. Three separate low-cost SISO controllers are employed in terms first order discrete-time intelligent Proportional-Integral (PI) with Takagi-Sugeno-Kang Proportional-Derivative (PD) terms. Iterative Learning Control (ILC) system structures PD learning functions involved current iteration ILC structures. Optimization problems defined tune parameters functions. objective as sums squared errors, they solved domain using recent metaheuristic Slime Mould Algorithm (SMA). experimental results prove after ten iterations SMA.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

designing unmanned aerial vehicle based on neuro-fuzzy systems

در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...

Some Experiences of the use of Iterative Learning Control for Performance Improvement in Robot Control Systems

Some aspects of the use of learning control for improved performance in robot control systems are studied. The learning control signal is used in combination with conventional feedback and feed-forward control. The eeects of disturbances, unmodeled dynamics and friction are studied theoretically and in simulations of a simpliied model of a robot arm. Convergence and robustness aspects of the ch...

متن کامل

Bilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control

This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...

متن کامل

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computers Communications & Control

سال: 2022

ISSN: ['1841-9844', '1841-9836']

DOI: https://doi.org/10.15837/ijccc.2022.1.4623